Mystical Winds Encyclopedia

ZZT-OOP Documents

Terminology/Jargon

24HoZZT:

The “24 Hours of ZZT” is an event held on IRC where an official announces a theme for a game and everyone participating has 24 hours to try to make the best game they can with that theme. The participants may also be allowed to work in teams, depending on the particular event.

ASCII:

The “American Standard Code for Information Interchange” is a set of 256 “characters,” usually with 8x14 pixel dimensions, and each with a foreground color and a background color. ZZT displays everything on the screen in ASCII.

Board:

This is a field that elements may be placed on in ZZT. It is 60x25 characters in area.

Company:

A ZZT or MegaZeux “company” isn’t truly a company, but an organized group of individuals whose games are released under the same surname. Releasing a game under a company has several advantages. First, it shows that the author is skilled enough to be accepted into a company (although, note that different companies may have different standards), and thus the user might have less apprehension about playing it. Second, other company members tend to be more eager to help you out in making the game, so if you have a question or need your game beta-tested, it is easier to do so if you are in a company.

Element:

Also called a “kind,” “thing,” or sometimes “object,” an element is any one-character unit that may be placed on a board in ZZT. This includes all terrain, creatures, items, and text.

Encyclopedia:

An encyclopedia is a game file of set of games files that is made to show various engines and techniques in ZZT. Two major ones are Chronos’ and Sega’s ZZT Encyclopedia/ZZT Encyclopedia Online and the Mystical Winds Encyclopedia, which is more recent and has updated information.

Flag:

A flag is an internal marker that may be placed using the #SET and #CLEAR commands. There are ten flags, each with a name that you (the programmer) determines in the #SET command. Every time you set a flag, it creates a new marker with that name. Note that if a single flag is set several times, all of those flag spots will be filled. You can completely delete a flag marker using the #CLEAR command. This removes just the first flag marker with the given name. If all ten flag spots are full, setting more flags simply puts them in place of the tenth flag. There is also a built-in flag, entitled SECRET, which, if set, disables the editor. For example, Town of ZZT has the SECRET flag pre-set upon the loading of the file. This may be removed using the +DEBUG cheat.

Forum:

Forums are part of a message board system. One single forum may contain a list of posts made by anyone passing by. Some message board systems require the user to register for an account (usually free) before they may post.

GCS:

A “Game Creation System” is a computer program that allows the user to create and play games in a format specific to the GCS.

GPL:

A program under the “General Public License” is, first of all, free. The GPL also allows anyone to release newer versions of the program, as long as the original creator is given credit and a certain license file is included.

IRC:

Most of the ZZT community is either on message boards or on “Internet Relay Chat,” which is a type of online chatting that requires an IRC client (a type of computer program), such as mIRC.

KevEdit:

Created by Kevin Vance and also worked on by Bitman, this is currently one of the two major external ZZT editors. It has more of a classic ZZT feel to it than ZZTAE (the other external editor) has, and also includes multi-directory support.

MegaZeux:

Created by Gregory Janson, who is said to be one of the greatest ZZTers of all time, MegaZeux is a ZZT clone with many more features than ZZT, such as in-game character and palette editing, large, scrolling boards, access to over a thousand counters in newer versions, and MOD/GDM and SAM support, which play real digital music/sound, instead of just PC Speaker. It is also open-source and under GPL, so anyone who knows C can change things in the source and release newer versions. The name comes from the series that comes with MegaZeux, the Zeux series, which is based off an old DOS side-scroller Greg Janson made called the Labrynth of Zeux.

Object:

An object is an element of which you may modify the code it uses to operate. The term “object” may mean the actual Object element, or simply the above description, which would include Scrolls.

OOP:

An “Object-Oriented Programming” language is a type of computer language that divides its code into various modules that work simultaneously, as opposed to one large block of code.

STK:

The original “Super Toolkit” was created by Gregory Janson. It allowed all colors for all elements to be used, instead of just seven colors for color-codominant and color-recessive elements and one color for most color-dominant ones. Chronos’ MoreSTK and WeirdSTK came later, covering things that weren’t in the original STK. Since then, many more toolkits have been made, mostly for different layouts that suit their games. Now, with the external editors, toolkits have become near obsolete.

Toolkit:

Originally conceived by Gregory Janson with the Super Toolkit, toolkits are generally boards with elements of colors that the default ZZT editor won’t produce. Most toolkits are only a single board, though some (such as the STK itself) might span an entire world. Often, ZZT companies have one or more “company toolkits” that are intended to be used only by or mostly by that specific company. Almost every toolkit, however, is public domain, meaning that if you want to export the board and import it into your own world, you may do so. However, the board should remain at least almost entirely unaltered, and all credit to the original producer of the toolkit should remain on the board.

Utility:

A utility is something used for ZZT, but not a game. Utilities may include anything from toolkits to screen capturing programs (like Screen Thief), help files to music writing programs. Pretty much anything that has to do with ZZT, but isn’t considered a game, can be called a utility.

World:

A world is a ZZT game file. It consists of one or more boards, as well as world information like how much ammo you should start with and what flags are already set.

ZIG:

The “ZZT-Inspired GCS” made by Interactive Fantasies’ Jacob Hammond (Aetsch) is a ZZT clone made to have some of the features that MegaZeux offers, but still keeping it more like ZZT in many ways. It also has a unique “layer” system that allows complete access to any given number of three-dimensional layers on one board. The language, XOP, has all of the commands in ZZT-OOP remained exactly the same, as well as many new ones. Another feature that makes ZIG the game of choice for some is the fact that it allows multiplayer games.

ZZT:

ZZT is an ASCII-based GCS created by Tim Sweeney of Epic MegaGames in the early 1990’s. It was one of the first, if not the first, real GCS ever to be created. It was programmed in Turbo Pascal, originally to be a simple word processor with basic loading and saving, which eventually just became the “!” command in the editor. ZZT doesn’t actually stand for anything (it was chosen so it would always appear last in an alphabetically ordered list of games), but it has been called the “Zoo of Zero Tolerance” in the past.

ZZTAE:

Created by CyQ, ZZT AdvancEditor is one of the two major external ZZT editors. Some of the features it has that KevEdit (the other external editor) doesn’t have are a built-in font editor, direct parameter editing, and recognition of more elements. As of version 1.0.3, it doesn’t come with a help file, but one is provided in an update created by Mystical Winds.

ZZT Clone:

A ZZT clone is a GCS directly based off ZZT. There are most often very obvious similarities, such as similar commands, being ASCII-based, or just the same concept. Some examples are MegaZeux, ZIG, ZZT++, ZZ3, and ZER.

ZZT-OOP:

This is the language ZZT uses for its objects. There are three major levels in the code: the operator, which signifies the type of operation being performed; the name of the function that the operator uses (i.e. the command name if the “#” operator is used); and any parameters that may be applied to the function, like direction, color, and element name for the PUT command.

